

Use Maps for Fertilizers & Environmental Exposure Assessment

Webinar 27th February 2018 13:00-13:45 CET

Practicalities

leondina@fertilizerseurope.com

Practicalities

Presentations and recording will be available at: http://www.reachfertilizers.com/

fertilizers europe	USE MAP	SPERCS	FEE TOOL	REGISTRANTS	FORMULATORS	END USERS	CHESAR	ENES	=
WEBINAR	1								
SAVE THE DATE!									
Webinar date: 27 February 201	8								
Time: 13:00 - 13:45 CET									
Use maps for fertilizers & envir	ronmental expos	ure assessme	int						
Fertilizers Europe is delighted to	o announce a web	pinar present	ng our new we	bsite REACH for fer	tilizers and the Fertil	ibers Environmen	tal Exposure	tool (FEE	

tool). A spreadsheet-based FEE tool has been developed together with related documents, to support registrants, formulators and downstream users in providing greater consistency and harmonised information on the safe use of fertilizers exposure and risk assessment for soil, sediment and surface waters of fertilizers. With the FEE tool, you can assess the environmental exposure of environmentally classified substances in fertilizer use. Today's focus is in the assessment of Manganese. Zinc and Copper substances.

The event is open to both members and non-members and participation to the webinar is free of charge. You can register here.

Agenda

- Introduction
 SPERCs and FEE Tool
- Practical examples for fertilizing recommendation
- Take-home message

Who we are

NKF **OCF**

OCI 🕅

NITROGEN

Communication within Supply Chain

europe

ertilizers

Risk Assessment

- Companies have to perform a quantitative exposure and risk assessment for all hazardous substances.
- The existing environmental exposure tools do not take into account:
 - o direct emissions to the soil
 - any direct and indirect releases from treated agricultural fields to surface water at the local scale
- To help members we have developed a FEE Tool for local exposure assessment of micronutrients (Cu, Zn and Mn)

Risk Assessment

FERTILIZERS ENVIRONMENTAL EXPOSURE (FEE) TOOL

User guidance for environmental exposure assessment of

fortilizors under REACH

November 2017

Performance Company and Researce C. Van Nanorrenthopen E. 3-1110: Drusseshi Bargues Insendrika (Derformanistick com 1981) Permit Sandrik Derformanistick 1982) Permit Sandrik Derformanistick 1982 (Permit Sandrik Derformanistick 1983) Permit Sandrik Derformanistick 1983 (Permit Sandrik Derformanistick 1983) Permit Sandrik Derformanistick 1983 (Permit Sandrik Derformanistick 1983) (Permit Sandrik

Doostaged in comparison with ARCHE Consulting

APCOR consulting codes Liefbarroomsat \$25

SpERCs and FEE Tool

Dr. Koen Oorts Dr. Sabine Navis

http://www.arche-consulting.be

Fertilizers Environmental Exposure Assessment

- **SPERCs:** Specific Environmental Release Categories developed covering outdoor fertilizer uses in Europe (factsheets + background doc)
- **FEE-tool:** Quantitative exposure assessment of generic and specific fertilizer use scenarios (Excel-based tool + user guidance)
- **Generic exposure scenarios:** Currently available for <u>4 SPERCs</u>, focused on micronutrients (Cu, Mn, Zn)

ertilizers

http://www.reachfertilizers.com

Fertilizers Environmental Exposure Assessment

- Current REACH modelling approaches are focused on industrial chemicals
- They do <u>not</u> include important processes for fertilizers:
 - Emissions to soil, water and air through direct fertilizer application
 - Plant uptake, crop offtake by harvest
 - o Drift and runoff to surface water

ertilizers

europe

Fertilizer exposure assessment: SPERCs + FEE-tool

Fertilizers Europe SPERCs

- Fertilizers Europe SPERCs: based on application technique
- <u>Conservative</u> direct emission estimates to environmental compartments under nutrient deficient, normal use conditions

SpERC1

Outdoor use - direct application of solid fertilizers to soil; surface spreading

SpERC2

Outdoor use - direct application of solid or liquid fertilizers to soil; incorporation, placement, mixing, seed treatment, drip irrigation

Outdoor use - application of fertilizers by helicopter

Download

Outdoor use – spray application of liquid fertilizers; soil surface spreading, sprinkler, pivot, foliar spray, slurry

C Download

Download

C Download

Fertilizers Europe SPERCs

Direct emissions surface water: FOCUS drift defaults / 10 (1/10th of field contributes to drift scenario)

FOCUS drift defaults

Crop

Drift

-			(% of application)
		Cereals, spring	2.8
-		Cereals, winter	2.8
		Citrus	15.7
()	Surface water (%)	Cotton	2.8
•)	Surface Water (70)	Field beans	2.8
		Grass / alfalfa	2.8
	0	Hops	19.3
	0	Legumes	2.8
		Maize	2.8
		Oil seed rape, spring	2.8
		Oil seed rape, winter	2.8
	0	Olives	15.7
		Pome / stone fruit, early appl	29.2
		Pome / stone fruit, late appl	15.7
		Potatoes	2.8
	3.32	Soybeans	2.8
	0.01	Sugar beet	2.8
		Sunflower	2.8
		Tobacco	2.8
	1.57	Vegetables, bulb	2.8
		Vegetables, fruiting	2.8
		Vegetables, leafy	2.8
		Vegetables, root	2.8
		Vines, early applns	2.7
		Vines, late applns	8.0
		Aerial application	33.2
Ger	neric worst-case	• No drift (incorp or seed trtmt)	0
		-	

				*
SPERC	Description	Air (%)	Soil (%)	Surface water (%)
1	Outdoor use – direct application of solid fertilizers to soil; surface spreading	0	100	0
2	Outdoor use – direct application of solid or liquid fertilizers to soil; incorporation, placement, mixing, seed treatment, drip irrigation	0	100	0
3	Outdoor use – application of solid fertilizers by helicopter	0	100	3.32
4	Outdoor use – spray application of liquid fertilizers; surface spreading, sprinkler, pivot, foliar spray, slurry	0	100	1.57

FEE-tool: environmental fate

Guidance on information requirements and Chemical Safety Assessment

Chapter R.16: Environmental exposure assessment

Version 3.0 February 2016

REACH guidance + FOCUS model:

Model equations and scenario defaults (basis for Excel-based tool)

FEE-tool: substance data

REACH dossiers (PNEC, substance properties) Deficiency thresholds (PECregional, soil)

FEE-tool development: crop data

			B			- E- B		0-10-
Crop statistics (from an under 20 10 2014 Tate Connected Inc.	2000 onwards)	8						(apro_aca_
TWV.					11.00 Feb	adula di productioni Escaluaria di Angelani	1000 Contract (1980)	
Constant for the production of	per Insuing at 1)	4.			and Car Loose			
· · · · · · · · · · · · · · · · · · ·	1000		1111	0000	8445	1911	9911	
and an inclusion of the local division of	44.664.70	A5.00 m M4	100.0012174	14 AVR. (17	10,000,000	000000.000	41.000.000	
of Spinster, Spinster, 5 (19) opposite the	#3.888.80	10.175.00	10.001	11.148.37	10,000,00	06.107.00	BC MARK	
and the second se	172.10	200.40	\$41.00	11.161.00	100 mil	444.90	307.88	202.0
leigente .	LTIT.IT.	1,711.00	1.60100	4.775.00	1,796.90	1,819,99	8.000 MI	1.000
And Revelle	1.070.00	1.002.78	1,049,05	1.40.81	-1-010-00	0.404.44	8.842.50	1,403.4
And a second	1,448.35.	1,892.00	1,487.00	LANS	1000.00	1,483,55	1.10110	10440
In many Low 1983 Salars 1	4,011,101	13(8)(4)	8,804-91	4,212.14	\$.345.a0	8,817.31	8.501.78	6,4664
amore	.00.10			-210.00	2-20100	1840.00	201.00	- 310
aller of the second sec	211.00	440.7676	496.07	202.38	286.00	121.48	208.7%	38.4
Cases.	4,000.00	4,000.07	1,040.04	4.047.76	000.00	041-01	100.00	1.044.8
PTC.	8,014.38	6.98.38	6.075.00	8,009-88	5.005.41	4,144.99	6.1M.81	
and a second sec	8,08120	100.30	0.341.10	8,009-81	6,582.89	0.011.09	8,472-62	62813
and a second sec	345 11	584.40	004.00	100.05	546-41	196.44	101.11	100.1
	8,419,29	1,000.00	1.441.00	4,000.58	10994	1011114	0.000.07	1.84.9
	41.28	28.16	11.11	00.00	2.4	11.12	20.78	25.1
March 1997	1,000,000	1.000.00	1 10 1 10	a deliver.	a second second	1.000.00	and the local data	1.041.0
100 C	1000		10.00				the second	
And and a second se	1.100.00	1.000.00	1,000,110	1.000.00	1007204	1.101.00	1.000.000	100010
tube .	0.00	2.00	100	0.00	8.00	6.00	2.00	
Color South	0110	(240.30	000-00	100.00	(11.0.100	111-99	120.00	100.0
addia.	811.00.	- ML20	845.92	81/9	April 194	MUR	184.10	974.5
when it	8.012.00	R.ONE-RE	8,061.80	1.407.28	CALLIN	1,104.30	0.479-88	1.4414
wither .	112.00	368.34	341.03	. 506.3m	1.20126-1	388.07	billion .	
	Analohin Rapp Sk Israel, 12 Iorae annos 4 annormal 10 Iorae aguillanti	s antesan 1 team	al anti-time attracts 1 mer reduced (dr. 2 merstel	ner containin maari (mi)				Concel when: 1 Tell and the

EUROSTAT database (crop type specific yield) Literature review (crop micronutrient concentrations)

FEE-tool: Generic assessment

INPUT

1,	Substance	Copper					
2.	Specific Environmental Release Category (SpERC)	SpERC 1: Outdoor	use - solid application; surface spreading				
3.	Single or multiple applications per growing season?	Multiple					
	Total annual fertilizer use rate	3,00	[kg/ha/year]				
	Number of applications	2					
	Time between applications	10	[days]				
	Fertilizer use rate per application	1,50	[kg/ha]				

GREEN mandatory input

Steps 1 – 3: Generic assessment

- 1. Selection of substance (Cu, Mn, Zn or "Other")
- 2. Choice of SPERC (SPERC 1 4)
- 3. Single or multiple applications and yearly use rate

Generic assessment = generic crop type

FEE-tool: Refined assessment

INPUT

1. Substance	Copper	
2. Specific Environmental Release Category (SpERC)	SpERC 1: Outdoo	or use - solid application; surface spreading
3. Single or multiple applications per growing season?	Multiple	
Total annual fertilizer use rate	3,00	[kg/ha/year]
Number of applications	2	
Time between applications	10	[days]
Fertilizer use rate per application	1,50	[kg/ha]
4. Refinement options		
Crop type	Cereals, spring	
Crop cover (interception)	Minimal crop cove	er, BBCH 10-19
European crop yield scenario	High	
Crop substance concentration		[he]
Crop yield		[Vha]

GREENmandatory inputBLUEoptional input

<u>Step 4</u>: Refined assessment (scaling options)

FEE-tool: Refined assessment

	Runoff	Crop offtake	Leaching	Volatilization	Biodegradation
SPERC 1	Х	Х	Х	Х	Х
SPERC 2		Х	Х	Х	Х
SPERC 3	Х		Х	Х	Х
SPERC 4	Х	Х	Х	Х	Х

Not included in EUSES

Refinement options:

- European crop yield scenario
- Crop substance concentration
- Crop type
- Crop growth stage

Crop offtake (removal from field)

Potential for runoff

FEE-tool: Refined assessment

Crop type specific assessment

Crop type	Generic crop	
Crop cover (interception)	No interception, bare soil, BBCH 00-	09
European crop yield scenario	Generic crop	
Crop substance concentration		
Oran sheld	Cereals, spring	
Crop yield	Cereals, winter	
5. Risk management measures	Citrus	
	Field beans	
FOCUS defaults (dr	ift)	
Cereals, winter	2,8	5 0 m 10 2
Citrus	15,7	
	2.0	THE REAL PROPERTY AND
Field beans	2,0	and the second s
Field beans Grass / alfalfa	2,8	a los and the second second

FEE-tool: Risk Management Measures (RMMs)

INPUT

fertilizers

europe

1. Substance	Copper	
2. Specific Environmental Release Category (SpERC)	SpERC 1: Outdoo	r use - solid application; surface spreading
3. Single or multiple applications per growing season?	Multiple	
Total annual fertilizer use rate	3,00	[kg/ha/year]
Number of applications	2	
Time between applications	10	[days]
Fertilizer use rate per application	1,50	[kg/ha]
. Refinement options		
Crop type	Cereals, spring	
Crop cover (interception)	Minimal crop cove	r, BBCH 10-19
European crop yield scenario	High	
Crop substance concentration		(9/I)
Crop yield		[t/ha]
Risk management measures (RMM) *	50	(% drift reduction)

GREENmandatory inputBLUEoptional inputYELLOWRMMs

* To be justified, and translated into specific RMMs in correspondence with (national) requirements and product labelling

<u>Step 5:</u> Risk management measures -> selection drift reduction (50, 75, 90%) NB: RMMs should be aligned with national requirements and product labeling

FEE-tool: Exposure assessment

OUTPUT

fertilizers europe

Exposure scenario	
Substance	Copper
SpERC	SPERC 4: Outdoor use - spray application of liquid fertilizers; soil surface spreading, sprinkler, piv
Application rate (total)	3 kg/ha/year
Number, timing applications	1 application
Crop type	Норв
Crop growth stage	Bare soil, BBCH 00-09
European crop yield scenario	High
Risk management measures	None

Emission estimate	[kg/ha]	[%]
Volatilization	0,0000	0,00
Drift	0,0580	1,90
Runoff	0,0012	0,04
Crop offlake	0,6263	20,48
Soil accumulation	2,3725	77,6

Volatilization
Drift
Runoff
Crop offtake
Soil accumulation

FEE-tool: Risk assessment

		Exposure assessment Effect a					Effect assessme		Risk characterisation	
Environmental compartment	C local year 1	C local year 10	PEC regional	PEC total year 1	PEC total year 10	Unit	PNEC	Unit	RCR year 1	RCR year 10
Soil (agricultural)	0,79	7,9	14,0	14,8	21,9	mg/kg dw	65,0	mg/kg dw	0,23	0,34
Freshwater (dissolved)	1,8	1,8	2,9	4,7	4,7	hð\r	7,8	µg/L	0,61	0,61
Sediment	1,9	1,9	67,5	69,4	69,4	mg/kg	87,0	mg/kg	0,80	0,80
Groundwater				0,0079	0,0117	mg/L				

Most sensitive environmental compartment year 1	freshwater	
Most sensitive environmental compartment year 10	freshwater	
Target RCR	0,90	
Estimated max application rate year 1	6,79	kg/ha/year
Estimated max application rate year 10	6,79	kg/ha/year

RCR < 1 = no risk for scenario RCR > 1 = refinement needed

Calculation safe application rate: based on most sensitive environmental compartment

Generic Exposure Scenarios (GES)

GES

🚯 Download – Cu – 9.1. Exposure scenario 1

ertilizers

europe

- 🚯 Download Cu 9.2. Exposure scenario 2
- 🕰 Download Cu 9.4. Exposure scenario 4
- Download Mn 9.1. Exposure scenario 1
- 🕭 Download Mn 9.2. Exposure scenario 2
- 🕹 Download Mn 9.4. Exposure scenario 4
- 🕰 Download Zn 9.1. Exposure scenario 1
- Download Zn 9.2. Exposure scenario 2
- Download Zn 9.3. Exposure scenario 3
- 🔕 Download Zn 9.4. Exposure scenario 4

Generic exposure scenarios available for download:

- SPERCs 1 4
- Micronutrients Cu, Mn, Zn

Generic Exposure Scenarios (GES)

GES

ertilizers

europe

9.4. Exposure scenario 4: Widespread use by professional workers Outdoor use - spray application of liquid Cu fertilizers

 Big
 Outcome of use:
 PC 12: Fertilizers

 Sector of use:
 SU 1: Agriculture, forestry, fishery

 Environment contributing scenario(s):
 ERC 8

 CS 1
 Outdoor use - spray application of liquid Cu fertilizers; soil surface spreading, sprinkler, pivot, foliar spray, slurry
 ERC 8e

 Fertilizers Europe SPERC 8e.4.v1
 SPERC 8e.4.v1

Generic exposure scenarios available for download:

- SPERCs 1 4
- Micronutrients Cu, Mn, Zn

Table 9.4.2. Exposure concentrations and risks for the environment

Protection target	Exposure concentration	Risk quantification
Fresh water	Local PEC: 6.7 µg/L	0.86
Sediment (freshwater)	Local PEC: 71.4 mg/kg	0.82
Sewage treatment plant	Not relevant (no STP)	
Marine water	Not relevant (no emissions to marine water)	
Sediment (marine water)	Not relevant (no emissions to marine water)	
Agricultural soil	Local PEC: 14.5 mg/kg dw.	0.22

Exposure based on results <u>FEE-tool</u>: C local + PEC regional

Fertilizers Environmental Exposure Assessment

FEE-tool

Generic exposure scenarios

Fertilizers environmental exposure assessment

(Soon) available for download:

- Generic exposure scenarios already available
- SPERC-files for import in CHESAR
- User guidance document for CHESAR

Expected March 2018

FERTILIZERS ENVIRONMENTAL EXPOSURE ASSESSMENT

USER GUIDANCE FOR CHESAR

Practical Examples For Fertilizing Recommendations

Reetta Puska

www.yara.com

SpERCs

Outdoor use - direct application of solid fertilizers to soil; surface spreading

SpERC2

Outdoor use - direct application of solid or liquid fertilizers to soil; incorporation, placement, mixing, seed treatment, drip irrigation

Outdoor use - application of fertilizers by helicopter

SpERC4

Outdoor use – spray application of liquid fertilizers, soil surface spreading, sprinkler, pivot, foliar spray, slurry

Manganese for potato –spERC2

RECOMMENDATION

- 1 application of granular fertilizer with Mn per summer into row -> **spERC2**
- 2 kg Mn / ha / year

fertilizers europe

INPUT

1. Substance	Manganese		drift due to
2. Specific Environmental Release Category (SpERC)	SPERC 2: Outdoor use- fertilizers to soil incorpo treatment, drip irrigation	direct application of solid or liquid ration, placement, mixing, seed	placement techniques
3. Single or multiple applications per growing season?	Single		
Total annual fertilizer use rate	2,00	[kg/ha/year]	
4. Refinement options			
Crop type	Potatoes		
Crop growth stage (BBCH)	Bare soll, BBCH 00-09		
European crop yield scenario	High		

OUTPUT

	Exposure assessment							sessment	Risk ch	aracterisation	
Environmental compartment	C local year 1	C local year 10	PEC regional	PEC total year 1	PEC total year 10	Unit	PNEC	Unit	RCR ye	ar 1 RCR year 1	0
Soil (agricultural)	0,44	4,4	0,0	0,4	4,4	mg/kg dw	12,4	mg/kg d w	0,04	0,35	
Freshwater (dissolved)	0,0	0,0	0,0	0,0	0,0	µg/L	12,8	µg/L	0,00	0,00	
Sediment	0,0	0,0	0,0	0,0	0,0	mg/kg	36,1	mg/kg	0,00	0,00	
Groundwater				0,0004	0,0037	mg/L					

No runoff or

RECOMMENDATION

- 2 applications of granular fertilizer with Zn per . summer -> spERC1
- à 0,5 kg Zn / ha -> 1 kg Zn / year •

fertilizers europe

Interval between applications 40 days • INPUT

Scenario information: SPERC 1: Outdoor use - direct,	e-fate model	
spreading	Refined assessment	Unit
Fraction available for drift (during application)		%
Drift refinement, after reduction based on RMM		%
Fraction available for run-off (30 days after application)	0,312	%
Runoff reduction	10	%
Crop substance concentration	39,0	g sub:
Crop yield	5,3	t yield.
Crop offtake	0,206	kg sut

Refinement: crop cover reduces

OUTPUT

	Exposure assessment						Effect as	sessment	Risk characterisation		
Environmental compartment	C local year 1	C local year 10	PEC regional	PEC total year 1	PEC total year 10	Unit	PNEC	Unit	RCR	ear1 R	CR year 10
Soil (agricultural)	0,26	2,6	41,3	41,6	43,9	mg/kg dw	107,0	mg/kg (v	v 0,39	0,	,41
Freshwater (dissolved)	2,7	2,7	3,4	6,1	6,1	µg/L	20,6	µg/L	0,30	0,	,30
Sediment	10,0	10,0	45,0	55,0	55,0	mg/kg	235,6	mg/kg	0,23	0,	,23
Groundwater				0,2970	0,3136	mg/L					

Copper for cereals – spERC4

RECOMMENDATION

3 applications of foliar fertilizer with Cuper summer -> spERC4

SPERC 4: Outdoor use - spray application of liquid tertilizers.

hahatset.

(dawn)

Rohal

BR16

(% shift is duction)

eoil sufface optending, sprinkler, pivot, foltar optay, slumy

á 0,25 kg Cu / ha -> 0,75 kg Cu / year

fertilizers europe

Interval between applications 10-14 days

Copper

Radigie 0.75

3

10

0.25

High

Generic crop there not EBCH 00-09

Growth Stage 13 - 20

Growth Stage 21 - 25

Growth Stage 31 - 32

Cereals: 0.5 l/ha from 2 leaf to second node detectable (Zadok's G.S. 12 to 32). For moderate to severe deficiency repeat applications at 10 to 14 day intervals, within the growth stages indicated. Water rate: 200 l/ha

Scenario information: SPERC 4: Outdoor use - spray	Input parameters e-fate model					
sprinkler, pivot, foliar spray, slurry	Default assessment Refined assessment					
Fraction available for drift (during application)	15,7					
Drift refinement, after reduction based on RMM	not considered					
Fraction available for run-off (30 days after application)	0,039					
Runoff reduction	not considered					

No refinement options selected

5. Flat management measures (RMM)* OUTPUT

		Exposure assessment					Effect a	ssessment	Risk characterisation		
Environmental compartment	C local year 1	C local year 10	PEC regional	PEC total year 1	PEC total year 10	Unit	PNEC	Unit	RCR year 1	RCR year 10	
Soil (agricultural)	0,25	2,5	14,0	14,2	16,5	mg/kg dw	65,0	mg/kg dw	0,22	0,25	
Freshwater (dissolved)	14,8	14,9	2,9	17,7	17,8	µg/L	7,8	μg4.	2,28	2,28	
Sediment	15,2	15.2	67,5	82,7	82,7	mg/kg	87,0	mg/kg	0,95	0,95	

finement needed !

INPUT

1. Babelance

Tatial annual fertilizer use rate

Fertilizer use rate per application

Cing growth stage (EBCH)

European crop yield scenario Crop substance concernation

Number of applications Time between applications

4. Refinement options Crostype.

Citop yield

2. Specific Environmental Release Category (SpERIC)

3. Single or multiple applications per growing season?

Copper for cereals – spERC4

RECOMMENDATION

- 3 applications of foliar fertilizer with Cuper summer -> spERC4
- á 0,25 kg Cu / ha -> 0,75 kg Cu / year

fertilizers

europe

Interval between applications 10-14 days

Growth Stage 13 - 20

Growth Stage 21 - 25

Growth Stage 31 - 32

Cereals: 0.5 l/ha from 2 leaf to second node detectable (Zadok's G.S. 12 to 32). For moderate to severe deficiency repeat applications at 10 to 14 day intervals, within the growth stages indicated. Water rate: 200 l/ha

Refinement 1: cereal instead of "generic crop" -> spray boom height is low for cereals -> drift will be reduced

Refinement 2: canopy coverage selected -> may lead to runoff reduction

OUTPUT

		Exposure assessment							Risk charac	terisation
Environmental compartment	C local year 1	C local year 10	PEC regional	PEC total year 1	PEC total year 10	Unit	PNEC	Unit	RCR year 1	RCR year 10
Soil (agricultural)	0,23	2,3	14,0	14,2	16,3	mg/kg dw	65,0	mg/kg dw	0,22	0,25
Freshwater (dissolved)	2,8	2,8	2,9	5,7	5,7	µg/L	7,8	μg/L	0,73	0,73
Sediment	2,9	2,9	67,5	70,4	70,4	mg/kg	87,0	mg/kg	0,81	0,81

Refinement 3: (not applied here) : country-specific buffer zones or drift reducing spray nozzles would help to reduce the drift further

INPUT

1. Butatance	Cepper			
2 Specific Environmental Release Calegory (SpERIC)	SPERC 4. Outdoor use - spray application of liquid fertiliza ool surface opreading, sprivitier, pivot foliar spray, stury			
3. Single or multiple applications per proving season?	Muttiple			
Total annual Refficer use rate	8,75	(rate/sea)		
Number of applications	3			
Time between applications	10	(daya)		
Fertilizer use rate per application	0.25	piphaj		
4. Refinement options				
Crop type	Cereals, spring			
Crop growth stage (BBCH)	Minimal crop cove	e, BBCH 10-19		
European crop yield scenario	Rate and RRDOH 00 03	200		
Crop substance concentration	Fal cators DRCH 80-82	10/1		
Crop peld		phu:		
5. Risk management measures (RMW) *	1	(% drift reduction)		

RECOMMENDATION

fertilizers europe

- Helicopter spreading of granules -> spERC3
- 0,6 kg Zn / ha
- Max 3 applications during forest lifecycle

INPUT

1. Substance	266
2 Specific Environmental Heleaue Category (SpERC)	SPERC 3: Outdoor use - application of solid fortilizers by helication
3. Single or multiple applications per growing season	7 Single
Turbai annival fletfikzer u.s.e.rate	0.60 (Eghavead
4. Retinement options	
Crup tope	Forest (aertal application)
Crop growth stage (BBCH)	Full cattopy, BBCH 40-80
European crop yield scenario	Law
Grop substance concentration	to#I
Cross yield	(Mrai
Riss management measures (RMM) *	58 (% drift reduction)

Scenario information: SPERC 3: Outdoor use -	Input param	neters «-fate model	
application of solid fertilizers by helicopter	Default assessment	Refined assessment	Unit
Fraction available for drift (during application)	33,2		%
Drift refinement, after reduction based on RMM	not considered	16,60	%
Fraction available for run-off (30 days after application)	0,347	\bigcirc	%
Runoff reduction	not considered	70	%

Refinement: GPS maps secure spreading accuracy and reduce drift 50-100 %

OUTPUT

	Exposure assessment						Effect assessment		Risk characterisation	
Environmental compartment	C local year 1	C local year 10	PEC regional	PEC total year 1	PEC total year 10	Unit	PNEC	Unit	RCR ye	ar 1 RCR year 10
Soil (agricultural)	0,20	2,0	41,3	41,5	43,3	mg/kg dw	107,0	mg/kg « v	/ 0,39	0,40
Freshwater (dissolved)	9,8	9,8	3,4	13,2	13,2	µg/L	20,6	µg/L	0,64	0,64
Sediment	36,4	36,4	45,0	81,4	81,4	mg/kg	235,6	mg/kg	0,35	0,35
Groundwater				0,2965	0,3091	mg/L			\bigcirc	

GES and FEE tool for the easy management of environmentally safe fertilizer recommendations

- Fertilizers are applied by variable techniques and timing for the crops
- Target is to avoid and cure nutrient deficiencies which would reduce crop yield and quality

- Protection of all environmental compartments is a key issue
 - ✓ Generic Exposure scenarios will cover the most common fertilizing practices
 - ✓ FEE tool allows to calculate the efficacy of risk management measures applicable for the less common fertilizing programs and special crops
 - -> Scaling

ertilizers

europe

-> DU CSR

Take-home message

Take-home message

 Use maps, SPERCs and FEE-tool allow for harmonization of fertilizers exposure and risk assessments within the supply chain

 Facilitate improved communication and information in the CSR and extended Safety Data Sheets

Thank you!

